Replication of the Range of Native Anterior Cruciate Ligament Fiber Length Change Behavior Achieved by Different Grafts

Author:

Robinson James1,Cody Stanford Fatima2,Kendoff Daniel2,Stüber Volker2,Pearle Andrew D.2

Affiliation:

1. Avon Orthopaedic Centre, Bristol, United Kingdom

2. Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York

Abstract

Background The native anterior cruciate ligament (ACL) does not behave as a simple bundle of fibers with constant tension but as a continuum of ligament fibers with differential length change during knee flexion/extension. Computer-assisted navigation can be used to assess length change in different fibers within the native ACL and to evaluate how different reconstruction grafts replicate the range of native ligament fiber length change behavior. Hypothesis Anterior cruciate ligament reconstruction graft size and configuration (single- vs double-bundle) are deciding factors as to how much of the native ACL fiber length change behavior is replicated. Study Design Controlled laboratory study. Methods The fiber length change behavior of the entire native ACL was assessed by measuring the length change pattern of representative anteromedial (AM) and posterolateral (PL) bundle fibers (1 at the center and 4 at the periphery of each bundle). The tibial and femoral ACL attachment areas in 5 fresh-frozen cadaveric knees were digitized, and the length change of each representative fiber was recorded during knee flexion/extension using an image-free, optical navigation system. Subsequently, single-bundle ACL reconstructions of different diameters (6, 9, and 12 mm) positioned at the center of the overall native femoral and tibial attachment sites were modeled to assess how much of the range of ligament fiber length change of the native ligament was captured. This was compared with a double-bundle graft using 6-mm-diameter AM and PL grafts positioned at the centers of the femoral and tibial attachment sites of each separate bundle. Results The 6-, 9-, and 12-mm single-bundle grafts simulated 32%, 51%, and 66% of the ligament fiber length change behavior of the native ACL, respectively. The length change patterns in these grafts were similar to the central fibers of the native ACL: the PL fibers of the AM bundle and AM fibers of the PL bundle. However, even a 12-mm graft did not represent the most AM and PL native fibers. The 6-mm AM and PL bundle grafts (equivalent in cross-sectional area to a 9-mm single-bundle graft) simulated 71% of the native ACL and better captured the extremes of the range of native ligament fiber length change. Conclusion Increasing single-bundle graft size appears to capture more of the range of native ACL fiber length change. However, for a similar graft cross-sectional area, a 2-bundle graft simulates the length change behavior of the native ligament more precisely and thus may better emulate the synergistic actions of anisometric and isometric fibers of the native ligament in restraining knee laxity throughout the range of flexion. Clinical Relevance The range of native ACL fiber length change behavior is better replicated by larger diameter grafts but may be best reproduced by double-bundle reconstruction.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3