Biomechanical Assessment of a Distally Fixed Lateral Extra-articular Augmentation Procedure in the Treatment of Anterolateral Rotational Laxity of the Knee

Author:

Devitt Brian M.1,Lord Breck R.2,Williams Andy3,Amis Andrew A.24,Feller Julian A.1

Affiliation:

1. OrthoSport Victoria, Epworth Healthcare, Melbourne, Australia

2. The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom

3. Fortius Clinic, London, United Kingdom

4. Musculoskeletal Surgery Group, School of Medicine, Imperial College London, London, United Kingdom

Abstract

Background: Most lateral extra-articular tenodesis (LET) procedures rely on passing a strip of the iliotibial band (ITB) under the fibular (lateral) collateral ligament and fixing it proximally to the femur. The Ellison procedure is a distally fixed lateral extra-articular augmentation procedure with no proximal fixation of the ITB. It has the potential advantages of maintaining a dynamic element of control of knee rotation and avoiding the possibility of overconstraint. Hypothesis: The modified Ellison procedure would restore native knee kinematics after sectioning of the anterolateral capsule, and closure of the ITB defect would decrease rotational laxity of the knee. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen cadaveric knees were tested in a 6 degrees of freedom robotic system through 0° to 90° of knee flexion to assess anteroposterior, internal rotation (IR), and external rotation laxities. A simulated pivot shift (SPS) was performed at 0°, 15°, 30°, and 45° of flexion. Kinematic testing was performed in the intact knee and anterolateral capsule–injured knee and after the modified Ellison procedure, with and without closure of the ITB defect. A novel pulley system was used to load the ITB at 30 N for all testing states. Statistical analysis used repeated measures analyses of variance and paired t tests with Bonferroni adjustments. Results: Sectioning of the anterolateral capsule increased anterior drawer and IR during isolated displacement and with the SPS (mean increase, 2° of IR; P < .05). The modified Ellison procedure reduced both isolated and coupled IR as compared with the sectioned state ( P < .05). During isolated testing, IR was reduced close to that of the intact state with the modified Ellison procedure, except at 30° of knee flexion, when it was slightly overconstrained. During the SPS, IR with the closed modified Ellison was less than that in the intact state at 15° and 30° of flexion. No significant differences in knee kinematics were seen between the ITB defect open and closed. Conclusion: A distally fixed lateral augmentation procedure can closely restore knee laxities to native values in an anterolateral capsule–sectioned knee. Although the modified Ellison did result in overconstraint to isolated IR and coupled IR during SPS, this occurred only in the early range of knee flexion. Closure of the ITB defect had no effect on knee kinematics. Clinical Relevance: A distally fixed lateral extra-articular augmentation procedure provides an alternative to a proximally fixed LET and can reduce anterolateral laxity in the anterolateral capsule–injured knee and restore kinematics close to the intact state.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3