The Biomechanical and Histological Processes of Rerouting Biceps to Treat Chronic Irreparable Rotator Cuff Tears in a Rabbit Model

Author:

Xu Junjie1ORCID,Li Yufeng1,Zhang Xueying1ORCID,Han Kang1,Ye Zipeng1,Wu Chenliang1,Jiang Jia1,Yan Xiaoyu1,Su Wei1ORCID,Zhao Jinzhong1

Affiliation:

1. Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Abstract

Background: Recently, the biceps was rerouted into a newly fabricated bicipital groove for in situ superior capsular reconstruction (SCR), resulting in promising time-zero cadaveric and clinical outcomes. However, no studies have determined the in vivo biomechanical and histological processes after the biceps is transposed to a nonanatomic position. Purpose: To explore the in vivo biomechanical and histological processes of the rerouting biceps tendon to treat chronic irreparable rotator cuff tears (IRCTs) in a rabbit model. Study Design: Controlled laboratory study. Methods: A total of 94 skeletally mature male rabbits were used to create a chronic IRCT model in the supraspinatus tendon. Then, the biceps rerouting procedures were performed in rabbits with chronic IRCT. Eighteen rabbits were sacrificed at 1, 3, 6, 9, and 12 weeks postoperatively for biomechanical testing, micro—computed tomography scanning, and histological analysis. The biomechanical and histological changes of intra- and extra-articular portions of the rerouting biceps were evaluated at each time point, with the contralateral native superior capsule (NSC) and the native biceps (NB) as controls, respectively. The morphology and bone formation of the fabricated bicipital grooves were evaluated, with native grooves as controls. Results: The intra-articular rerouting biceps tendon was progressively remodeled over time, displaying denser fibers and more mature collagen than those of the NSC, with gradual improvements in the tendon-to-bone healing interface from 6 to 12 weeks. Consequently, the failure load and stiffness of the intra-articular rerouting biceps portion increased with time and were significantly higher than those of the NSC from 9 weeks. Similarly, the extra-articular portion of the rerouting biceps progressively healed into a new bicipital groove, as demonstrated by a smaller tendon-to-bone interface from 6 to 12 weeks, resulting in greater failure load and stiffness at 9 and 12 weeks than those of the NB attachment. The newly fabricated bicipital groove showed similar morphology to that of the native groove with sufficient trabecular bone formed underneath. Conclusion: The rerouting biceps could progressively remodel and heal into the newly fabricated bicipital groove over time, resulting in greater biomechanical performances in intra- and extra-articular portions than the NSC and the NB attachment. Clinical Relevance: The biceps rerouting technique may be a feasible procedure to perform in situ SCR to treat IRCT in the future clinical practice; however, more clinical evidence is required.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Rising-Star Program

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3