Adipose Stem Cell–Derived Exosomes Recover Impaired Matrix Metabolism of Torn Human Rotator Cuff Tendons by Maintaining Tissue Homeostasis

Author:

Zhang Xuancheng1,Cai Zhuochang1,Wu Minghu2,Huangfu Xiaoqiao1,Li Juehong1,Liu Xudong1

Affiliation:

1. Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China.

2. Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Abstract

Background: Adipose stem cell–derived exosomes (ASC-Exos) are reported to effectively prevent muscle atrophy and degeneration of torn rat rotator cuff, but their influence on human samples and their potential mechanism are still unclear. Purpose: We aimed to investigate the effects of ASC-Exos on the metabolic activities of torn human rotator cuff tendons and explore the potential mechanism behind it. Study Design: Controlled laboratory study. Methods: Diseased supraspinatus tendons were harvested from 15 patients with a mean ± SD age of 65.8 ± 3.2 years who underwent reverse shoulder arthroplasty for chronic rotator cuff tears associated with glenohumeral pathological changes. Each tendon was dissected into 3 × 4 × 4–mm explants: the ones derived from the same tendon were placed into 12-well plates and cultured in complete culture media (control) or in complete culture media supplemented with ASC-Exos for 72 hours. Afterward, the concentrations of cytokines secreted into the culture media—including interleukin 1β (IL-1β), IL-6, IL-8, and matrix metalloproteinase 9 (MMP-9)—were measured using enzyme-linked immunosorbent assay (ELISA). Tendons were stained with hematoxylin and eosin and immunohistochemistry (type I and III collagens) for histological analyses. Moreover, the expression of anabolic genes ( TIMP-1 and TIMP-3; type I and III collagen encoding) and catabolic genes ( MMP-9 and MMP-13) in tendons were measured using real-time quantitative polymerase chain reaction. Phosphorylated AMPKα and Wnt/β-catenin pathways were assayed by western blotting to explore the potential mechanism of action of ASC-Exos. Results: Secretion of proinflammatory cytokines, including IL-1β, IL-6, and MMP-9, was significantly reduced in the ASC-Exos group as compared with the control group. Supraspinatus tendons in the ASC-Exos group exhibited superior histological properties, as demonstrated by higher tendon maturing scores and more type I collagen content, but there was no significant difference in type III collagen content between groups. Expression of MMP-9 and MMP-13 genes was decreased in the ASC-Exos group versus the control group. Increased expression of type I and III collagens and an elevated type I/III ratio were found in the ASC-Exos group when compared with the control group. There was no significant difference in the secretion of IL-8 and expression of TIMP-1 and TIMP-3 genes between the ASC-Exos and control groups. Western blotting revealed that ASC-Exos enhanced phosphorylated AMPKα and decreased β-catenin levels to prevent tendon degeneration. Conclusion: ASC-Exos maintained metabolic homeostasis of torn human rotator cuff tendons to improve their histological properties, which might be achieved by enhancing AMPK signaling to suppress Wnt/β-catenin activity. Clinical Relevance: ASC-Exos could be used as an effective biological tool to promote healing in torn human rotator cuff tendons.

Funder

national natural science foundation of china

natural science foundation of shanghai

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3