Effects of Anterior Closing Wedge Tibial Osteotomy on Anterior Cruciate Ligament Force and Knee Kinematics

Author:

Yamaguchi Kent T.1,Cheung Edward C.1,Markolf Keith L.1,Boguszewski Daniel V.1,Mathew Justin1,Lama Christopher J.1,McAllister David R.1,Petrigliano Frank A.1

Affiliation:

1. Biomechanics Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Abstract

Background: A certain percentage of patients undergoing anterior cruciate ligament (ACL) reconstruction will experience graft failure, and there is mounting evidence that an increased posterior tibial slope (PTS) may be a predisposing factor. Theoretically, under tibiofemoral compression force (TFC), a reduced PTS would induce less anterior tibial translation (ATT) and lower ACL force. Hypothesis: Ten-degree anterior closing wedge osteotomy of the proximal tibia will significantly reduce ACL force and alter knee kinematics during robotic testing. Study Design: Controlled laboratory study. Methods: Eleven fresh-frozen human knees were instrumented with a load cell that measured ACL force as the knee was flexing continuously from 0° to 50° under 200-N TFC as our initial testing condition, followed by the addition of the following tibial loads: 45-N anterior force (AF), 5-N·m valgus moment (VM), 2-N·m internal torque (IT), and all loads combined. ACL force and knee kinematics were recorded before and after osteotomy. Results: Osteotomy produced significant changes in the tibiofemoral position at full extension (as defined by a 2-N·m knee extension moment). This resulted in apparent knee hyperextension (9.4° ± 1.9°), posterior tibial translation (7.9 mm ± 1.6 mm), internal tibial rotation (3.2° ± 2.3°), and valgus tibial rotation (3.2° ± 1.5°). During straight knee flexion with TFC alone, osteotomy reduced ACL force to 0 N beyond 5° of flexion, and ATT was reduced between 0° and 45° ( P < .05). With TFC + AF, ACL force was reduced beyond 5° of flexion, and ATT was reduced between 5° and 45° ( P < .05). With TFC + VM, ACL force was less than 10 N beyond 5° of flexion, and ATT was reduced at all flexion angles ( P < .05). Under the loading conditions TFC + IT and TFC + IT + AF + VM, osteotomy did not significantly change ACL force or ATT at any flexion angle. Conclusion: In general, osteotomy lowered ACL force and reduced ATT when IT was not present. The benefits of osteotomy were negated when IT was included possibly because the dominant mechanism of ACL force generation was cruciate impingement from internal winding and not ATT. Clinical Relevance: PTS-reducing osteotomy significantly decreased ACL force and reduced ATT for knee loads that did not include IT.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3