Differential Interactive Effects of Cartilage Traumatization and Blood Exposure In Vitro and In Vivo

Author:

Joos Helga1,Leucht Frank2,Riegger Jana1,Hogrefe Cathrin1,Fiedler Jörg1,Dürselen Lutz3,Reichel Heiko2,Ignatius Anita3,Brenner Rolf E.1

Affiliation:

1. Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany

2. Department of Orthopedics, University of Ulm, Ulm, Germany

3. Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany

Abstract

Background: Sport injuries of the knee often lead to posttraumatic arthritis. In addition to direct damage of the cartilage, trauma-associated intra-articular bleeding may cause hemarthrosis. Both blood exposure and trauma are known to induce cell death and inflammation and to enhance proteoglycan release in cartilage. Hypothesis: Blood exposure increases chondrocyte death as well as inflammatory and degenerative processes in traumatized cartilage. Study Design: Controlled laboratory study. Methods: Human macroscopically intact osteoarthritic (OA) cartilage explants were impacted by a drop-tower system (0.59 J) and cultivated with or without 10% blood. Interactive effects were studied concerning cell survival, gene expression, and the release of mediators over 24 hours and 96 hours. To evaluate the effects of trauma and hemarthrosis in vivo, a newly established blunt cartilage trauma model in the rabbit was used. Treatment of the knee joints of mature New Zealand White rabbits consisted of the following groups: control (C), arthrotomy (A), arthrotomy with cartilage trauma (AT; 1.0 J), and arthrotomy with cartilage trauma and blood injection (ATH). After 1 and 12 weeks, inflammatory mediators in the synovial fluid and histological changes of the cartilage were determined, and immunohistological staining was performed. Results: The in vitro studies revealed a significant additional or synergistic effect of blood exposure on trauma-induced chondrocyte death, interleukin (IL)–1β and prostaglandin-E2 (PGE2) release, and matrix metalloproteinase (MMP)/pro-MMP level. Singular arthrotomy in vivo induced a temporary inflammation. Histologically, cartilage trauma caused significant OA changes that were not aggravated by an additional hemarthrosis. Trauma led to a persistent deposition of terminal complement complex (TCC), being enhanced by hemarthrosis. However, trauma-induced formation of osteophytes and arthrotomy-induced elevation of tumor necrosis factor–α release were reduced by hemarthrosis. Conclusion: While blood exposure clearly aggravated trauma-induced OA processes in the in vitro model, a singular blood injection revealed heterogeneous effects in vivo, enhancing TCC deposition but reducing trauma-induced osteophyte formation while the histological score of traumatized cartilage was not further impaired. Clinical Relevance: The results of this study indicate that a singular, limited bleeding event might not exacerbate early trauma-induced cartilage degeneration in joint injuries. An early removal of intra-articular blood may not prevent the final resulting cartilage damage.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3