Affiliation:
1. Musculoskeletal Research Center, Department of Orthopaedic Surgery,
University of Pittsburgh, Pittsburgh, Pennsylvania
Abstract
To investigate the effect of simulated contraction of the popliteus muscle on the in situ forces in the posterior cruciate ligament and on changes in knee kinematics, we studied 10 human cadaveric knees (donor age, 58 to 89 years) using a robotic manipulator/universal force moment sensor system. Under a 110-N posterior tibial load (simulated posterior drawer test), the kinematics of the intact knee and the in situ forces in the ligament were determined. The test was repeated with the addition of a 44-N load to the popliteus muscle. The posterior cruciate ligament was then sectioned and the knee was subjected to the same tests. The additional popliteus muscle load significantly reduced the in situ forces in the ligament by 9% to 36% at 90° and 30° of flexion, respectively. No significant effects on posterior tibial translation of the intact knee were found. However, in the ligament-deficient knee, posterior tibial translation was reduced by up to 36% of the translation caused by ligament transection. A coupled internal tibial rotation of 2° to 4° at 60° to 90° of knee flexion was observed in both the intact and ligament-deficient knees when the popliteus muscle load was added. Our results indicate that the popliteus muscle shares the function of the posterior cruciate ligament in resisting posterior tibial loads and can contribute to knee stability when the ligament is absent.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献