Biomechanical Comparison of Arthroscopic Repairs for Acromioclavicular Joint Instability

Author:

Beitzel Knut1,Obopilwe Elifho1,Chowaniec David M.1,Niver Genghis E.1,Nowak Michael D.1,Hanypsiak Bryan T.2,Guerra James J.3,Arciero Robert A.1,Mazzocca Augustus D.1

Affiliation:

1. Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut

2. Orthopedic Associates of Long Island, East Setauket, New York

3. Collier Sports Medicine and Orthopedics, Naples, Florida

Abstract

Background: Arthroscopic procedures for reconstruction of acromioclavicular (AC) joint separations are increasingly used in clinical practice. Multiple surgical techniques exist, but there are still few data on biomechanical performances of commonly used arthroscopic techniques and fixation methods. Hypothesis: Single and double clavicular tunnel reconstructions show comparable primary stability with a modified Weaver-Dunn procedure, and double tunnel constructs show superior horizontal stability. Study Design: Controlled laboratory study. Methods: The AC joints of 40 cadaveric shoulders were tested for anterior, posterior, and superior translation (70-N load) and maximal load to failure (superior) with the MTS 858 Bionix II Servohydraulic testing system. Shoulders were assigned to 4 groups: (1) native (n = 18), (2) coracoclavicular (CC) reconstruction with 1 clavicular and 1 coracoid tunnel (SCT) fixed with a suture pulley and 2 buttons (n = 8), (3) CC reconstruction with 2 clavicular and 1 coracoid tunnel (DCT) fixed with a suture pulley and 3 buttons (n = 8), and (4) modified Weaver-Dunn reconstruction (n = 6). Results: Native specimens showed a mean anterior translation of 7.92 mm (±1.69 mm), a mean posterior translation of 7.84 mm (±2.09 mm), and a superior translation of 4.28 mm (±1.81 mm). Maximal load to failure was 579.44 N (±148.01 N). The SCT technique showed a mean anterior translation of 5.81 mm (±1.16 mm), posterior translation of 8.30 mm (±1.94 mm), and a superior translation of 2.28 mm (±0.52 mm). The maximal load to failure was 591.35 N (±231.17 N). Anterior and superior translations were significantly less compared with the native specimen ( P = .005 and P = .003). The DCT technique had an anterior translation of 4.68 mm (±0.6 mm), posterior translation of 6.85 mm (±0.83 mm), and superior translation of 2.09 mm (±0.86 mm). The mean maximal load to failure was 651.16 N (±226.93 N). Anterior and superior translations were significantly less compared with the native specimens ( P = .000 and P = .001). No statistically significant differences were shown between SCT and DCT reconstruction for all measurements ( P > .05). One reconstruction of the modified Weaver-Dunn procedure failed directly after mounting it into the testing device. The remaining 5 showed a mean anterior translation of 11.36 mm (±3.17 mm), a mean posterior translation of 13.51 mm (±2.21 mm), and a mean superior translation of 3.31 mm (±0.47 mm). Anterior and posterior translations were significantly increased compared with the native specimen ( P = .019 and P = .000). The mean maximal load to failure measured 311.13 N (±52.2 N) and was significantly less compared with the native specimen ( P = .000). The Weaver-Dunn technique showed significantly less maximal load to failure and more anterior and posterior translation compared with SCT and DCT ( P ≤ .05). Conclusion: Isolated reconstruction of the CC ligaments using single and double clavicular tunnel techniques results in a high load to failure for superior translation, which is equal to the native stability, and less translation in all 3 directions as well as higher superior stability when compared with the modified Weaver-Dunn procedure. A potential drawback is the risk of coracoid fracture, as the high load to failure of the device may exceed load to failure of cortical bone prior to device breakage. Clinical Relevance: Single clavicular tunnel arthroscopic reconstructions of the coracoacromial ligaments show good biomechanical results.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3