TISSUE-SPECIFIC GLUCOSE 6-PHOSPHATE DEHYDROGENASES IN ANOPHELINE MOSQUITOES

Author:

BIANCHI UMBERTO1,RINALDI ANTONIETTINA1

Affiliation:

1. Institute of Genetics, University of Cagliari, Cagliari, Italy

Abstract

Glucose 6-phosphate dehydrogenase (G6PD) electrophoretic variants have been detected in single adult homogenates by screening laboratory strains of Anopheles atroparvus, Anopheles labranchiae and Anopheles stephensi. Pair mating crosses of A. atroparvus individuals set up to study the inheritance mechanism of this apparent polymorphism failed to show Mendelian segregation. Furthermore, monomorphic and tissue-specific G6PD bands were obtained from single adult "midgut" and single adult "skin" homogenates and the apparent polymorphism disappeared. However, the electrophoretic heterogeneity reappeared when 10 µl of the gut homogenate were added to an equal volume of the skin homogenate and permitted to interact in vitro at room temperature (20-25°C) for 4-5 min. Bovine trypsin greatly modified the anodical mobility of the skin isoenzyme. Single whole homogenates, prepared in buffers containing soybean (trypsin inhibitor), partially retained the electrophoretic heterogeneity. On this experimental background it is possible to draw the following conclusions: (a) at least two monomorphic and tissue-specific (gut and skin) G6PD isoenzymes are present in the anopheline species studied by us; (b) a factor (or factors) possessing a trypsin-like action seems to be present in the whole body homogenate, this factor seems to be particularly active in interacting with the skin enzyme; and (c) the occurrence of a similar interaction could facilitate the formation of G6PD catalytically active molecular artifacts. These data and analogous results obtained by other authors permitted us to conclude that if genetic analysis has not been performed it is very hazardous to interpret zymograms simply by assuming that any electrophoretic heterogeneity necessarily represents a genetic polymorphism.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3