Design of a Novel Edge-Centric Cloud Architecture for m-Learning Performance Effectiveness by Leveraging Distributed Computing Paradigms’ Potentials

Author:

Mohiuddin Khalid1ORCID,Fatima Huda2,Khan Mohiuddin Ali3,Khaleel Mohammad Abdul4ORCID,Begum Zeenat5,Khan Sajid Ali4,Hussain Omer Bin4

Affiliation:

1. Department of Management Information Systems, College of Business, King Khalid University, Abha, Saudi Arabia

2. Department of Information Technology, College of Computer Science & Information Technology, Jazan University, Jazan, Saudi Arabia

3. Department of Computer and Network Engineering, College of Computer Science & Information Technology, Jazan University, Jazan, Saudi Arabia

4. Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia

5. Department of Information Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia

Abstract

This article aims to design a novel edge-centric hierarchical cloud architecture to optimize mobile learning (m-learning) performance during learners executing computation-intensive learning applications. This research adopts the potential of distributed computing paradigms, that is, mobile edge, for improving the effectiveness of m-learning performance in higher education. Edge computing enables computing at the network’s edge and effectively avoids latencies while processing learners’ computational requests. The envisioned architecture was designed on the ETSI MEC ISG protocols and deployed on the university mobile cloud infrastructure. Additionally, a use case was designed, focusing the edge computing’s latency-avoiding ability, and executing it in a real-time environment involving sixteen students from an academic course. The execution results validated the architecture’s contribution, such as tasks executed in the local server, optimized learner privacy, reduced latencies, instant access, lowered bandwidth consumption, and continued tasks’ execution despite the failure of smart nodes. The result influences user acceptance and attracts designers to extend the architecture base focusing on machine learning algorithms (for learning analytics) and blockchain (to prevent malicious attacks) to improve the effectiveness of learning management system performance.

Funder

King Khalid University

Publisher

SAGE Publications

Subject

General Social Sciences,General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3