Data and Knowledge Organization for Natural Language Processing: Searching and Identifying Better Arrangements of Texts Based on Multimodal Information Architecture

Author:

Kuroki Júnior George Hideyuki1ORCID,Gottschalg-Duque Cláudio2

Affiliation:

1. University of Brasília, Distrito Federal, Brazil

2. Artificial Intelligence Excellence Center - CEIA/UFG

Abstract

Processing texts of multiple knowledge areas is a hard task. This article presents an Information Science contribution to natural language processing based on artificial neural networks through data arrangement. An extended concept of Information architecture was used, aggregating a multimodal view of organizing data. The Multimodal Information Architecture definition served as foundations for a five-step procedure to design, analyze and transform data used for artificial neural networks training and learning methods, complementing gaps identified by authors focused on Computer Science implementations. The proposal was validated with three datasets formed by texts coming from 16 knowledge areas. Results obtained through the usage of pre-processed data and raw data where compared. In each of the three datasets, the method identified arrangements which led to better and worst results, separating which corpus samples are more susceptible for knowledge extraction.

Publisher

SAGE Publications

Reference28 articles.

1. Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier]

2. Bahdanau D., Cho K., Bengio Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv: 1409.0473.

3. The theory of dynamic programming

4. Modalities and Multimodalities

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards the use of Blockchain Technology in SEI, a Brazilian Electronic Document and Process Management Tool;Anais do II Colóquio em Blockchain e Web Descentralizada (CBlockchain 2024);2024-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3