The Impact of Ignoring a Level of Nesting Structure in Multilevel Mixture Model

Author:

Chen Qi1

Affiliation:

1. University of North Texas, Denton, USA

Abstract

Mixture modeling has gained more attention among practitioners and statisticians in recent years. However, when researchers analyze their data using finite mixture model (FMM), some may assume that the units are independent of each other even though it may not always be the case. This article used simulation studies to examine the impact of ignoring a higher nesting structure in multilevel mixture models. Results indicate that the misspecification results in lower classification accuracy of individuals, less accurate fixed effect estimates, inflation of lower level variance estimates, and less accurate standard error estimates in each subpopulation, the latter result of which in turn affects the accuracy of tests of significance for the fixed effects. The magnitude of the intraclass correlation (ICC) coefficient has a substantial impact. The implication for applied researchers is that it is important to model the multilevel data structure in mixture modeling.

Publisher

SAGE Publications

Subject

General Social Sciences,General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3