Population Flow and Epidemic Spread: Direct Impact and Spatial Spillover Effect

Author:

Zhang Chao1,Chen Si1ORCID,Wang Chunyang2,Zhao Yi13,Ao Min4

Affiliation:

1. Hebei University of Technology, Tianjin, China

2. Chongqing Jiaotong University, China

3. Fu Dan University, Shanghai, China

4. The First Affiliated Hospital of Chongqing Medical University, China

Abstract

Based on population migration data from Baidu and the spatial Durbin model, this paper examines the impact of population mobility on the spatial transmission of COVID-19 and provides a basis for forecasting epidemic transmission and guiding public health intervention plans from the perspectives of population mobility and geographical space. The results show that epidemic spreading displays a clear spatial pattern that includes not only spreading from Wuhan to the surrounding areas but also secondary transmission in the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta regions through population flows. The epidemic degree in each area is directly affected by the number of population inflows from Wuhan and indirectly affected by the spatial spillover effect from other areas. Due to the lack of strict restrictions on population flows, the spatial spillover effect in areas outside Hubei gradually strengthened after the closure of Wuhan and exceeded the direct effect, and the intensity of population flows within Wuhan had a significant impact on the spread of the epidemic. Without considering the spatial spillover effect, the model will overestimate the impact of population inflows in Wuhan on the local epidemic and underestimate the total effect of regional patterns on epidemic transmission.

Funder

national natural science foundation of china

Key Program of National Natural Science Foundation of China

National Social Science Foundation of China

Publisher

SAGE Publications

Subject

General Social Sciences,General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3