Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection

Author:

Yao Jason1ORCID,Alabousi Abdullah12,Mironov Oleg12

Affiliation:

1. Department of Radiology, McMaster University, Hamilton, ON, Canada

2. St Joseph’s Healthcare Hamilton, Hamilton, ON, Canada

Abstract

Purpose: To evaluate the accuracy of a Bidirectional Encoder Representations for Transformers (BERT) Natural Language Processing (NLP) model for automating triage and protocol selection of cross-sectional image requisitions. Methods: A retrospective study was completed using 222 392 CT and MRI studies from a single Canadian university hospital database (January 2018-September 2022). Three hundred unique protocols (116 CT and 184 MRI) were included. A BERT model was trained, validated, and tested using an 80%-10%-10% stratified split. Naive Bayes (NB) and Support Vector Machine (SVM) machine learning models were used as comparators. Models were assessed using F1 score, precision, recall, and area under the receiver operating characteristic curve (AUROC). The BERT model was also assessed for multi-class protocol suggestion and subgroups based on referral location, modality, and imaging section. Results: BERT was superior to SVM for protocol selection (F1 score: BERT-0.901 vs SVM-0.881). However, was not significantly different from SVM for triage prediction (F1 score: BERT-0.844 vs SVM-0.845). Both models outperformed NB for protocol and triage. BERT had superior performance on minority classes compared to SVM and NB. For multiclass prediction, BERT accuracy was up to 0.991 for top-5 protocol suggestion, and 0.981 for top-2 triage suggestion. Emergency department patients had the highest F1 scores for both protocol (0.957) and triage (0.986), compared to inpatients and outpatients. Conclusion: The BERT NLP model demonstrated strong performance in automating the triage and protocol selection of radiology studies, showing potential to enhance radiologist workflows. These findings suggest the feasibility of using advanced NLP models to streamline radiology operations.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3