Affiliation:
1. Department of Anaesthesia and Intensive Care, Flinders Medical Centre, Adelaide, South Australia
Abstract
Breathing through an endotracheal tube, connector, and ventilator demand valve imposes an added load on the respiratory muscles. As respiratory muscle fatigue is thought to be a frequent cause of ventilator dependence, we sought to examine the efficacy of five different ventilators in reducing this imposed work through the application of pressure support ventilation. Using a model of spontaneous breathing, we examined the apparatus work imposed by the Servo 900-C, Puritan Bennett 7200a, Engstrom Erica, Drager EV-A or Hamilton Veolar ventilators, a size 7.0 and 8.0 mm endotracheal tube, and inspiratory flow rates of 40 and 60 l/min. Pressure support of 0, 5, 10, 15, 20 and 30 cm H2O was tested at each experimental condition. Apparatus work was greater with increased inspiratory flow rate and decreased endotracheal tube size, and was lowest for the Servo 900-C and Puritan Bennett 7200a ventilators. Apparatus work fell in a curvilinear fashion when pressure support was applied, with no major difference noted between the five ventilators tested. At an inspiratory flow rate of 40 l/min, a pressure support of 5 and 8 cm H2O compensated for apparatus work through size 8.0 and 7.0 endotracheal tubes and the Servo 900-C and Puritan Bennett 7200a ventilators. However, the maximum negative pressure was greater for the Servo 900-C. The added work of breathing through endotracheal tubes and ventilator demand valves may be compensated for by the application of pressure support. The level of pressure support required depends on inspiratory flow rate, endotracheal tube size, and type of ventilator.
Subject
Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mechanical Ventilation;Critical Care Nephrology;2019
2. Design Features of Modern Mechanical Ventilators;Clinics in Chest Medicine;2016-12
3. Mechanical ventilation;Oh's Intensive Care Manual;2014
4. Mechanical ventilation;Oh's Intensive Care Manual;2009
5. Mechanical Ventilation;Critical Care Nephrology;2009