11C-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than 11C-(R)-PK11195

Author:

Kobayashi Masato1,Jiang Teresa1,Telu Sanjay1,Zoghbi Sami S1,Gunn Roger N23,Rabiner Eugenii A2,Owen David R3,Guo Qi2,Pike Victor W1,Innis Robert B1,Fujita Masahiro1

Affiliation:

1. Molecular Imaging Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA

2. Imanova Ltd, London, UK

3. Division of Brain Sciences, Department of Medicine, Imperial College, London, UK

Abstract

Positron emission tomography (PET) radioligands for translocator protein 18 kDa (TSPO) are widely used to measure neuroinflammation, but controversy exists whether second-generation radioligands are superior to the prototypical agent 11C-( R)-PK11195 in human imaging. This study sought to quantitatively measure the “signal to background” ratio (assessed as binding potential ( BPND)) of 11C-( R)-PK11195 compared to one of the most promising second-generation radioligands, 11C-DPA-713. Healthy subjects had dynamic PET scans and arterial blood measurements of radioligand after injection of either 11C-( R)-PK11195 (16 subjects) or 11C-DPA-713 (22 subjects). To measure the amount of specific binding, a subset of these subjects was scanned after administration of the TSPO blocking drug XBD173 (30–90 mg PO). 11C-DPA-713 showed a significant sensitivity to genotype in brain, whereas 11C-( R)-PK11195 did not. Lassen occupancy plot analysis revealed that the specific binding of 11C-DPA-713 was much greater than that of 11C-( R)-PK11195. The BPND in high-affinity binders was about 10-fold higher for 11C-DPA-713 (7.3) than for 11C-( R)-PK11195 (0.75). Although the high specific binding of 11C-DPA-713 suggests it is an ideal ligand to measure TSPO, we also found that its distribution volume increased over time, consistent with the accumulation of radiometabolites in brain.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3