SIRT1 mediates hypoxic postconditioning- and resveratrol-induced protection against functional connectivity deficits after subarachnoid hemorrhage

Author:

Clarke Julian V1ORCID,Brier Lindsey M2,Rahn Rachel M2ORCID,Diwan Deepti1,Yuan Jane Y1,Bice Annie R2,Imai Shin-ichiro3,Vellimana Ananth K1,Culver Joseph P2,Zipfel Gregory J1

Affiliation:

1. Department of Neurological Surgery, Washington University School of Medicine, St. Louis, USA

2. Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA

3. Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA

Abstract

Functional connectivity (FC) is a sensitive metric that provides a readout of whole cortex coordinate neural activity in a mouse model. We examine the impact of experimental SAH modeled through endovascular perforation, and the effectiveness of subsequent treatment on FC, through three key questions: 1) Does the endovascular perforation model of SAH induce deficits in FC; 2) Does exposure to hypoxic conditioning provide protection against these FC deficits and, if so, is this neurovascular protection SIRT1-mediated; and 3) does treatment with the SIRT1 activator resveratrol alone provide protection against these FC deficits? Cranial windows were adhered on skull-intact mice that were then subjected to either sham or SAH surgery and either left untreated or treated with hypoxic post-conditioning (with or without EX527) or resveratrol for 3 days. Mice were imaged 3 days post-SAH/sham surgery, temporally aligned with the onset of major SAH sequela in mice. Here we show that the endovascular perforation model of SAH induces global and network-specific deficits in FC by day 3, corresponding with the time frame of DCI in mice. Hypoxic conditioning provides SIRT1-mediated protection against these network-specific FC deficits post-SAH, as does treatment with resveratrol. Conditioning-based strategies provide multifaceted neurovascular protection in experimental SAH.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3