Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis

Author:

Tefera Tesfaye W1,Borges Karin1

Affiliation:

1. Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia

Abstract

Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1-13C]glucose and [1,2-13C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1H and 13C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3-13C]lactate, total alanine and [3-13C]alanine, but not cortical glucose and [1-13C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1-13C]glucose-derived [4-13C]glutamate, [4-13C]glutamine and [2-13C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3-13C]pyruvate entry into the TCA cycle. Lack of changes in [1,2-13C]acetate-derived [4,5-13C]glutamate, [4,5-13C]glutamine and [1,2-13C]GABA levels indicate unchanged astrocytic 13C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2-13C] and [4-13C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1G93A mouse model at symptomatic disease stages.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3