Dl-3-N-butylphthalide attenuates ischemic reperfusion injury by improving the function of cerebral artery and circulation

Author:

Qin Chuan1,Zhou Panting1,Wang Liping2,Mamtilahun Muyassar1,Li Wanlu1,Zhang Zhijun1,Yang Guo-Yuan12,Wang Yongting1

Affiliation:

1. Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

2. Department of Neurology, School of Medicine, Shanghai Jiao Tong University, Ruijin Hospital, Shanghai, China

Abstract

Dl-3-N-butylphthalide (NBP) is approved in China for the treatment of ischemic stroke. Previous studies have shown that NBP promotes recovery after stroke via multiple mechanisms. However, the effect of NBP on vascular function and thrombosis remains unclear. Here, we aim to study the effect of NBP on vascular function using a rat model of transient middle cerebral artery occlusion (MCAO) and a state-of-the-art high-resolution synchrotron radiation angiography. Eighty SD rats underwent MCAO surgery. NBP (90 mg/kg) was administrated daily by gavage. Synchrotron radiation angiography was used to evaluate the cerebral vascular perfusion, vasoconstriction, and vasodilation in real-time. Neurological scores, brain infarction and atrophy were evaluated. Real-time PCR was used to assess the expression levels of thrombosis and vasoconstriction-related genes. Results revealed that NBP attenuated thrombosis after MCAO and reduced brain infarct and atrophy volume. NBP administrated at 1 and 4 h after MCAO prevented the vasoconstriction of the artery and maintained its diameter at normal level. Administrated at one week after surgery, NBP functioned as a vasodilator in rats after MCAO while displayed no vasodilating effect in sham group. Our results suggested that NBP attenuates brain injury via increasing the regional blood flow by reducing thrombosis and vasoconstriction.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3