Flow Properties and Melt Distortion in Molten Rubber Compounds under Capillary Extrusion: Effects of Vulcanizing Systems and Fillers

Author:

Patcharaphun Somjate1,Sukniyom Yanichsa1,Chookaew Watcharapong2,Sombatsompop Narongrit

Affiliation:

1. Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand, 10900

2. Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand, 10900

Abstract

This work aimed to make use of a rate-controlled capillary rheometer for investigating the effects of vulcanizing system using various fillers on the apparent viscosity and extrudate swelling of natural rubber (NR) compounds. The results suggested that the rubber compounds exhibited a pseudoplastic non-Newtonian behavior. At any given shear rates, the viscosities of rubber compound utilizing conventional (CV) and efficient vulcanizing (EV) systems were lower than that of non-sulfur (NS) system. This was due to the occurrence of premature crosslinking at the skin layer and subsequently led to the wall slip of rubber compound during the flow in capillary die. The irregular surface and the onset of smooth surface of rubber extrudate were evidently seen, especially for CV and EV systems. This could be associated with the amount of required energy to obtain the steady state flow in the die. The results also suggested that the swelling ratio of rubber extrudate ranged from 1.2 to 2.2 and the effect of filler type was more pronounced at high shear rates above 400 s−1. In the case of silica filler (SiO2) system, the severe irregularity of rubber extrudate was observed. The lower shear rate employed to obtain the smooth surface for rubber extrudate containing 30 phr of SiO2 was possibly caused by high amount of PEG acting as an external lubricant which promoted the uniform slippage during the flow in capillary die.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3