The effect of 1,3-(bis citraconimidomethyl)Benzene on the reversion of cured ethylene-propylene-diene monomer (EPDM) rubber using semi-efficient vulcanisation (SEV) system and a nano zinc oxide as an activator

Author:

Emami Tajodin Simin1ORCID,Ostad Movahed Saeed1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

This study presents a comprehensive analysis of the impact of the anti-reversion agent, 3-(bis citraconimidomethyl) Benzene, Perkalink 900, on the properties, with a focus on reversion tendencies, of carbon black-filled ethylene-propylene-diene monomer (EPDM) rubber compounds cured using a semi-efficient vulcanization (SEV) sulfur curing system with various accelerators. The research highlights that the presence of Perkalink 900 significantly prolongs the optimum cure times for all rubber compounds, reducing ∆torques, especially in fast-curing systems. Crosslink density (CLD) exhibits minimal sensitivity to Perkalink 900, which effectively prevents reversion, even reaching zero in certain compounds. Reversion extent varies with the chosen curing system, and the concentration of Perkalink 900 plays a key role in its control. Perkalink 900 enhances Shore A hardness, indicating a denser and stiffer rubber, while tear strength and elongation at break improve. Tensile strength remains stable or slightly increases, and the modulus response varies based on the curing agent and Perkalink 900 loading. ATR-FTIR spectra confirm Perkalink 900 presence, with peak intensities correlating with its concentration. Additionally, a new Alder-ene reaction mechanism between EPDM and Perkalink 900 is proposed. Overall, the study establishes Perkalink 900 as an effective anti-reversion agent, proving its potential to significantly enhance rubber compound properties. Future investigations could focus on optimizing Perkalink 900 concentrations for specific applications and exploring its interactions with diverse rubber types and curing systems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3