Investigation of structural parameters of acoustic panels produced from post-industrial textile wastes containing different raw materials

Author:

Yalcin-Enis Ipek1,Sezgin Hande1ORCID

Affiliation:

1. Istanbul Technical University, Textile Technologies and Design Faculty, Textile Engineering Department, Istanbul, Turkey

Abstract

Although noise pollution appears to be a minor issue, it worsens as a result of urbanization and population growth. Unwanted noises have a wide range of negative effects, including anxiety, hostility, high blood pressure, tinnitus, hearing loss, and sleep difficulties. The researchers are compelled to conduct a creative search in order to uncover future environmental solutions due to the noise problem, which is becoming each day worse. Moreover, the textile sector, which is growing day by day, generates huge amounts of waste with the effect of fast fashion trend. The objective of this study is to develop ecofriendly acoustic panels utilizing recycled textile waste and thermoplastic polypropylene (PP) fibers. Within the scope of the study, waste fabrics made of viscose, lyocell, flax, cotton, and polyester are shredded into fibers, and sandwich panels including waste fibers bonded together with PP fibers are generated using the hot press technique. In addition to the use of natural and synthetic fibers, the effects of surface shape (perforated-imperforated) and layer thickness (5 mm and 10 mm) on acoustic performance are examined. The results of the sound absorption and sound transmission loss tests reveal that the acoustic properties of the samples improve as the sample thickness increases, but the perforation process does not have the desired favorable impact on samples of the same thickness. Additionally, the outcomes demonstrate that around 2000 Hz, natural and regenerated fibers with high cellulose content had the best sound absorption coefficients around 0.60. The findings indicate that these eco-friendly panels can be used to reduce unwanted noise in open offices, co-working spaces, and meeting rooms.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3