Development of polyurethane/polyethylene terephthalate/fiber glass polymeric composite from internal auto parts waste

Author:

Fujii Laura C1,Shiino Marcos Y1ORCID

Affiliation:

1. São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos.

Abstract

The use of polymers in the automotive industry has been growing significantly, the recycling of these materials is a major challenge nowadays, since most polymer parts comprises of different types of polymers, and they are joined by chemical adhesives due to their lack of good compatibility. This characteristic hampers the recycling of such polymers, and makes separation economically unfeasible, as a consequence, their final destination has ended up in landfills. In this sense, the present research developed a technique to verify the recyclability of the manufacturing waste polymer auto parts from industry processes, through the polymer layup process to obtain a composite (fiberglass, polyester fiber, polyurethane) in the form of flat panel. To achieve the objectives, the polymers were individually analyzed by differential scanning calorimetry to assist in the definition of the overlap of joined polymers, in which differentiates from the conventional method of polymer blend by extrusion. The preformed polymer was consolidated by a hot press. The polymer composites were evaluated by three-point bending test and their structure was analyzed using scanning electron microscopy (SEM). The results in flexural properties indicate a suitable consolidation strategy when compared with results in literature, which is explained by the presence of glass fiber and PET in the final composition. Through the SEM images, it enabled to observe a good interface between the glass fiber and the polyester-based polymer matrix of the wastes, directly influencing the mechanical results of the material.

Funder

FundaÃ&z.hfl;§Ã&z.hfl;£o de Amparo Ã&z.hfl; Pesquisa do Estado de SÃ&z.hfl;£o Paulo

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3