Thermal aging and automotive oil effects on the performance of electron beam irradiated styrene butadiene rubber/waste and microwave devulcanized rubber blends

Author:

Raslan Heba A1,Fathy ES1ORCID,Abdel Aal SE1

Affiliation:

1. Department of Polymer Chemistry, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

Abstract

Replacement of virgin polymer with its waste become one of the special technique that capture the efforts of many researchers and industrialists alike. In this context, this work discussed the partial replacement of waste tire rubber (WR) and microwave devulcanized rubber (DWR) at different ratios on the properties of virgin styrene butadiene rubber (SBR) as one of the most essential components of synthetic rubber in the tire production. Fixed percent of tetramethylthiuram disulfide and spindle oil were added at the first, then the WR mixture was exposed to different microwave times. Microwave devulcanization value at time 6 min gave the highest devulcanization percent. The prepared blends were exposed in an electron beam accelerator (EB) at 50 and 100 kGy. FTIR, different mechanical parameters, thermal stability (TGA) and scanning electron microscopy of the fabricated specimens have been explained. Effect of automotive oil and thermal aging at different temperature, 70oC and 100oC on the tensile strength and elongation at break (E%) of the unirradiated and irradiated prepared blends have been estimated. Mechanical measurements of all examined specimens after thermal aging and oil immersion were least affected. Moreover, these factors before and after oil dipping and thermal aging revealed that unirradiated and irradiated SBR/DWR blends have superior properties than SBR/WR.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3