Effect of electron beam radiation on the mechanical, electrical, heat shrinkable and morphological properties of linear low-density polyethylene/polyolefin elastomer blends

Author:

Agarwal Rohini1,Singh Manjeet1,Ray Chowdhury Subhendu1ORCID,Pant Harish Jagat1

Affiliation:

1. Isotope & Radiation Application Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

The blending of polymers is an efficient means for developing new materials in a less hazardous and more economical way compared to the synthetic route. Polymers with different properties are blended to obtain a new material with combined properties. In this study, a thermoplastic elastomer blend is prepared by melt mixing a metallocene-based polyolefin elastomer (Engage 8003, abbreviated as EN) with linear low-density polyethylene (LLDPE, abbreviated as LL) using a twin-screw extruder in various compositions. To investigate the effect of the electron beam on the properties, LL, EN and their blends are irradiated in the 50–250 kGy dose range. The samples are subjected to gel fraction, mechanical, dynamic mechanical, hardness, heat shrinkability, volume resistivity and morphological studies. The % gel fraction, hardness and heat shrinkability of a sample increase with an increase in the irradiation dose. With increasing LL content, Young’s modulus and ultimate tensile strength of the blends are increased, maintaining the % elongation at break in an attractive region. LE64 (60 wt% LL and 40 wt% EN) and LE46 (40 wt% LL and 60 wt% EN) blends show optimized mechanical and dynamic mechanical properties. Irradiation further increases the tensile strength and Young’s modulus of LE64 up to 150 kGy and LE46 up to 200 kGy. The volume resistivity of the LE64 blend increases tenfold and quadruples for LE46 compared to non-irradiated blends when irradiated at 200 kGy. The morphological structures of the non-irradiated and crosslinked blends support the outcome of the obtained properties nicely.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3