The hybrid approach of genetic algorithm and particle swarm optimization on reduced weld line defect in plastic injection molding

Author:

Oktem Hasan12ORCID,Uygur Ilyas3,Sarı Ece Simooglu1,Shinde Dinesh4

Affiliation:

1. Hereke Asım Kocabıyık Vocational School, Department of Machine and Metal Technology, Kocaeli University, Kocaeli, Turkey

2. Natural Science Institutes, Polymer Science and Technology, Kocaeli University, Umuttepe, Turkey

3. Department of Mechanical Engineering, Duzce University, Duzce, Turkey

4. Elecon Gear Company, Gujarat, India

Abstract

Weld lines are a serious defect observed in plastic injection molded parts, impacting both their cosmetic appearance and mechanical properties. Controlling the conditions of plastic injection is crucial to mitigate these weld lines. This study introduces a novel approach to identify polypropylene injection molding (PIM) conditions aimed at reducing weld lines in polypropylene parts. The PIM conditions considered in this study include melt temperature, injection pressure, packing pressure, packing time, and cooling time. An orthogonal array Taguchi L27 design was employed for the experimental setup, producing 27 polypropylene parts with varying combinations of process conditions. The width of weld lines generated on the parts’ surfaces was measured using an optimum microscope for all trials. Parametric analysis was conducted using response surface plots and contour plots to estimate the process conditions yielding minimum weld lines. Analysis of variance and regression analysis were employed to interpret the experimental data, with the resulting regression equation used to predict weld lines for a set of PIM process conditions. Finally, two efficient optimization algorithms, genetic algorithm (GA), and particle swarm optimization (PSO), were implemented using MATLAB programming to estimate the optimum process conditions for minimizing weld lines. The GA and PSO predicted weld line widths of 6.12302 μm and 6.123 μm, respectively, representing an 18.51% improvement in results. These findings demonstrate that the novel approach presented in this study can be effectively and reliably applied to address plastic product defects in the industry.

Funder

Kocaeli University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3