Process of Incorporation of Cerium Oxide in Viscose to Spin Infrared Reflecting Viscose Fibers

Author:

Sharma Esha1,Agarwal Ram2,Ralebhat Shrikant1,Krishnamurthy Gurudatt1,Bhagwat Sunil3,Adivarekar Ravindra V.2

Affiliation:

1. Aditya Birla Science and Technology Co. Pvt. Ltd, Mumbai, India

2. Department of Fibres & Textile Processing Technology, Institute of Chemical Technology, Mumbai, India

3. Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India

Abstract

The concept of leveraging the optical properties of cerium oxide into viscose fibers was demonstrated in this study. The process of dispersing cerium oxide particles uniformly into viscose dope prior to viscose fiber spinning was studied in detail. Cerium oxide powder was dispersed in the chosen media using mechanical treatments such as ball milling and ultrasonication. These experiments were carried out at two extreme pH values to replicate the viscose spinning bath (acidic pH 5) and viscose dope (alkaline pH 13). The dispersion was characterized for particle size and surface charge properties. A combination of the mechanical treatments synergistically reduced the cerium oxide particle size in acidic and alkaline pH from 1300 to 290 nm and from 1040 to 280 nm, respectively. Three surfactants of different ionic natures were evaluated for stabilizing the cerium oxide dispersions. The effects on the particle size of cerium oxide in two dispersion environments, that is, aqueous and polymeric media, were studied through conventional as well as novel visual characterization techniques. The phosphate ether-based anionic surfactant was found to significantly reduce the dispersed particle size and effectively stabilize the dispersion better, which was validated through a pressure buildup monitoring system during viscose fiber spinning. The surfactant-stabilized cerium oxide dispersion was used to get functional infrared reflecting viscose fibers. To characterize this effect, a direct visual evaluation was done through an infrared camera which indicated a significant improvement of infrared reflectivity and a 2.5–3°C surface temperature buildup of the cerium-oxide viscose fibers in comparison to regular viscose fibers. The infrared reflective property of cerium oxide imparts a thermal insulation effect which was found to increase to a thermal insulating value of 90 in the case of cerium oxide viscose fibers compared with a thermal insulating value of 79 in regular viscose fibers, as measured by the KESF Thermolabo II instrument. This study can very well be extended to many fiber-making processes where an understanding of interfacial interactions of additives with cellulose is critical to impart functionality to viscose fibers.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3