Sustaining Natural Dye Plants with Post-Consumer Textile Waste

Author:

Trejo Helen X1ORCID,Trejo Nidia K2,Lewis Tasha L3

Affiliation:

1. Department of Apparel Merchandising and Management, Don B. Huntley College of Agriculture, California State Polytechnic University, Pomona, CA, USA

2. Independent Scholar, San Francisco, CA, USA

3. Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA

Abstract

Aligned with the circular economy framework, this study aims to address pertinent research gaps regarding material and chemical properties of clothing and suitability for closed-loop applications. Primary research questions include: (1) what are the material and chemical properties of post-consumer textile waste from a sustainable fashion take-back program; (2) which natural post-consumer textile waste is most suitable to support the growth of natural dye plants in a hydroponics system; and (3) can the use of post-consumer textile waste in a hydroponics system be scaled to support a circular fashion supply chain? This study focuses on wool, cotton, linen, silk, rayon, and Tencel® lyocell as substrates to nurture the growth of purple basil, a natural dye plant. Vertical hydroponics is a farming method that uses nutrient water to grow plants in place of soil throughout the year. The system can be indoors, making resourceful use of limited space available and the water is recirculated. Standard hydroponic substrates, like peat moss and rockwool, have good porosity for oxygen transport and suitable moisture holding capacity for nutrient delivery. In this study, we compared the performance of the standard hydroponic substrates with various textiles. The impact on water quality, color release, moisture wicking, stability against degradation, and survival rate of the plants was used to evaluate suitability in the application. Wool, silk, and Tencel lyocell demonstrated good durability in the hydroponic system, like peat moss and rockwool, during the first growth cycle. During the second growth cycle, protein fibers—wool and silk—supported plant survival at a greater capacity than Tencel lyocell. Future research can confirm that wool and silk can support the growth of natural dye plants with a larger sample size. This research aligns with several circular economy objectives and provides a model for future research to support circular fashion supply chains.

Funder

Walmart Foundation’s U.S. Manufacturing Innovation Fund

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3