Affiliation:
1. Reliability and Operational Research, Indian Statistical Institute, Kolkata, West Bengal, India.
2. Sampling and Official Statistics Unit, Indian Statistical Institute, Kolkata, West Bengal, India.
Abstract
In recent times there has been an increasing level of debate whether patterns do exist in equity market movements and whether they can be predicted. In order to overcome the shortcomings of traditional time series models, we have focused our study on the application of non-parametric paradigms like stacked multi-layer perceptrons (MLP), long short term memory (LSTM), gated recurrent unit (GRU), bidirectional long short term memory (BLSTM) and gated bidirectional recurrent unit (BGRU) on three NSE listed banks to predict short term stock price, and compared their performance with a shallow neural network benchmark. We have predicted equity ‘Close Prices’ five minutes into the future, using a sliding window approach and have observed that average error in predictions of MLP, LSTM, GRU, BLSTM and BGRU models, varied between 0.09% and 0.1%, indicating their superior performance with regard to benchmark baseline of 0.88%. We have used the aforementioned predictions to determine price trends, which successfully outperformed the random walk baseline accuracy of 50%. JEL Classification: C45, C58, G11, G14
Subject
General Economics, Econometrics and Finance
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献