Affiliation:
1. German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Braunschweig, Germany
Abstract
In the framework of the German Collaborative Research Center CRC 880: Fundamentals of High Lift for Future Civil Aircraft porous materials as a means towards the reduction of airfoil trailing edge noise are investigated. At DLR, both experimental and numerical approaches are pursued to understand the physics behind the noise reduction. The present paper focuses on the numerical investigations, for which the experimental data serves as an evaluation basis. From the analysis of homogeneous materials, first steps are made towards the design of aeroacoustically tailored materials. It is assumed that materials with locally varying permeability may be suitable to achieve maximum noise reduction, as they provide a smooth transition from the solid airfoil to the free flow in the wake. The simulation results support this understanding, however it is revealed that high local gradients in the material properties themselves may act as acoustic sources.
Funder
Deutsche Forschungsgemeinschaft
Subject
Acoustics and Ultrasonics,Aerospace Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献