Framework for Accurate Classification of Self-Reported Stress From Multisession Functional MRI Data of Veterans With Posttraumatic Stress

Author:

Goel Rahul1ORCID,Tse Teresa1,Smith Lia J.23,Floren Andrew4,Naylor Bruce14,Williams M. Wright35,Salas Ramiro1356ORCID,Rizzo Albert S.7,Ress David1ORCID

Affiliation:

1. Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA

2. Department of Psychology, University of Houston, Houston, TX, USA

3. Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA

4. Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

5. Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA

6. The Menninger Clinic, Houston, TX, USA

7. Institute for Creative Technologies, University of Southern California, Los Angeles, CA, USA

Abstract

Background: Posttraumatic stress disorder (PTSD) is a significant burden among combat Veterans returning from the wars in Iraq and Afghanistan. While empirically supported treatments have demonstrated reductions in PTSD symptomatology, there remains a need to improve treatment effectiveness. Functional magnetic resonance imaging (fMRI) neurofeedback has emerged as a possible treatment to ameliorate PTSD symptom severity. Virtual reality (VR) approaches have also shown promise in increasing treatment compliance and outcomes. To facilitate fMRI neurofeedback-associated therapies, it would be advantageous to accurately classify internal brain stress levels while Veterans are exposed to trauma-associated VR imagery. Methods: Across 2 sessions, we used fMRI to collect neural responses to trauma-associated VR-like stimuli among male combat Veterans with PTSD symptoms (N = 8). Veterans reported their self-perceived stress level on a scale from 1 to 8 every 15 s throughout the fMRI sessions. In our proposed framework, we precisely sample the fMRI data on cortical gray matter, blurring the data along the gray-matter manifold to reduce noise and dimensionality while preserving maximum neural information. Then, we independently applied 3 machine learning (ML) algorithms to this fMRI data collected across 2 sessions, separately for each Veteran, to build individualized ML models that predicted their internal brain states (self-reported stress responses). Results: We accurately classified the 8-class self-reported stress responses with a mean (± standard error) root mean square error of 0.6 (± 0.1) across all Veterans using the best ML approach. Conclusions: The findings demonstrate the predictive ability of ML algorithms applied to whole-brain cortical fMRI data collected during individual Veteran sessions. The framework we have developed to preprocess whole-brain cortical fMRI data and train ML models across sessions would provide a valuable tool to enable individualized real-time fMRI neurofeedback during VR-like exposure therapy for PTSD.

Funder

Michael E. DeBakey Veterans Affairs

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Clinical Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3