Affiliation:
1. University of Alberta, Canada; Singidunum University, Serbia
2. University of Alberta, Canada
3. Radboud University, The Netherlands
Abstract
We present an implementation of DIANA, a computational model of spoken word recognition, to model responses collected in the Massive Auditory Lexical Decision (MALD) project. DIANA is an end-to-end model, including an activation and decision component that takes the acoustic signal as input, activates internal word representations, and outputs lexicality judgments and estimated response latencies. Simulation 1 presents the process of creating acoustic models required by DIANA to analyze novel speech input. Simulation 2 investigates DIANA’s performance in determining whether the input signal is a word present in the lexicon or a pseudoword. In Simulation 3, we generate estimates of response latency and correlate them with general tendencies in participant responses in MALD data. We find that DIANA performs fairly well in free word recognition and lexical decision. However, the current approach for estimating response latency provides estimates opposite to those found in behavioral data. We discuss these findings and offer suggestions as to what a contemporary model of spoken word recognition should be able to do.
Funder
Social Sciences and Humanities Research Council of Canada
Subject
Speech and Hearing,Linguistics and Language,Sociology and Political Science,Language and Linguistics,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献