Diabetes, advanced glycation endproducts and vascular disease

Author:

Wautier Jean-Luc1,Guillausseau Pierre-Jean2

Affiliation:

1. Biologie Vasculaire et Cellulaire, UFR - Lariboisie`re - Saint Louis et INTS, Paris, France

2. Service de Médecine Interne 2, Hôpital Lariboisière et FacultédeMédecine Lariboisie`re - Saint Louis, Université Paris VII, France

Abstract

The high incidence of vascular complications in patients with diabetes mellitus remains incompletely understood. Several metabolic or endocrine abnormalities have been postulated as possible triggers for micro and macroangiopathies. This review article focuses on the consequences of hyperglycemia, leading to the formation of advanced glycation endpro-ducts (AGE), on vascular function. Advanced glycation endproducts are the product of the binding of aldoses onto free amino groups of proteins or lipoproteins, which, after molecular rearrangement, result in a class of molecules of a brown color and specific fluorescence. Different cell membrane proteins have been shown to bind AGE and the best characterized receptor for AGE has been named RAGE. The AGE receptor is present on different cell types including endothelial cells, smooth muscle cells, lymphocytes and monocytes. Experimental studies have revealed that the binding of AGE to RAGE produces an activation of monocytes and endothelial cells. Activated endothelial cells produce interleukin and express vascular cell adhesion molecule and tissue factor. Advanced glycation endproducts, when infused into animals, induce an increase in vascular permeability. The blockade of RAGE by specific antibodies corrects the hypermeability observed in diabetic animals. The prevention of AGE formation by aminoguanidine treatment improves the microvascular lesions found in diabetic animals either in the retina or the glomerus. The infusion of recombinant RAGE in diabetic animals corrects hyperpermeability. The colocalization of RAGE and AGE at the microvascular site of the injury suggests that their interaction may play a significant role in the pathogenesis of diabetic vascular lesions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3