Multiplex analysis for the identification of plasma protein biomarkers for predicting lung cancer immunotherapy response

Author:

Hong Moonki12ORCID,Lee Sang Wook3,Cho Byoung Chul1ORCID,Hong Min Hee1,Lim Sun Min4ORCID,Kwon Nak-Jung5

Affiliation:

1. Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea

2. Palliative Care Center, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea

3. Macrogen Inc, Seoul, South Korea

4. Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

5. Precision Medicine Institute, Macrogen Inc, World Meridian I, 10F, 254, Beotkkot-ro, Geumcheon-gu, Seoul 08511, South Korea

Abstract

Background: Programmed death-ligand (PD-L1) expression serves as a predictive biomarker for immune checkpoint inhibitor (ICI) sensitivity in non-small cell lung cancer (NSCLC). Nevertheless, the development of biomarkers that reliably predict ICI response remains an ongoing endeavor due to imperfections in existing methodologies. Objectives: ICIs have led to a new paradigm in the treatment of NSCLC. The current companion PD-L1 diagnostics are insufficient in predicting ICI response. Therefore, we sought whether the Olink platform could be applied to predict response to ICIs in NSCLC. Design: We collected blood samples from patients with NSCLC before ICI treatment and retrospectively analyzed proteomes based on their response to ICI. Methods: Overall, 76 NSCLC patients’ samples were analyzed. Proteomic plasma analysis was performed using the Olink platform. Intraplate reproducibility, validation, and statistical analyses using elastic net regression and generalized linear models with clinical parameters were evaluated. Results: Intraplate coefficient of variation (CV) assays ranged from 3% to 6%, and the interplate CV was 14%. In addition, the Pearson correlation coefficient of the Olink Normalized Protein eXpression data was validated. No statistical differences were observed in the analyses of progressive disease and response to ICIs. Furthermore, no single proteome showed prognostic value in terms of progression-free survival. Conclusion: In this study, the proximity extension assay-based approach of the Olink panel could not predict the patient’s response to ICIs. Our proteomic analysis failed to achieve predictive value in both response or progression to ICIs and progression-free survival (PFS).

Funder

National Research Foundation of Korea

Korea Technology and Information Promotion Agency for SMEs

Ministry of Trade, Industry and Energy

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3