Ultracytochemical studies of the effects of aluminum on the blood-brain barrier of mice.

Author:

Vorbrodt A W,Dobrogowska D H,Lossinsky A S

Abstract

We studied the effect of chronic exposure (6 weeks and 6 months) of mice to drinking (tap) water containing 1.76% (0.06 M) aluminum lactate on some cytochemical properties of the blood-brain barrier (BBB). The plasmalemma-bound enzymatic activities of alkaline phosphatase (AP) and Ca(2+)-activated adenosine triphosphatase (Ca(2+)-ATPase) were studied at the ultrastructural level. Anionic sites were localized with cationized ferritin in a pre-embedding procedure and with cationic colloidal gold in a post-embedding procedure applied to brain samples embedded in Lowicryl K4M. Intravenously injected Evans blue and horseradish peroxidase (HRP) were used for evaluation of the functional state of the BBB. The results indicate that chronic exposure to aluminum does not noticeably affect barrier function of the endothelium of cerebral cortex blood microvessels. Focal leakage of larger than capillary microvessels (presumably arterioles and venules) was observed only in a few areas, such as the basal ganglia and amygdaloid nuclei. The localization of both enzymatic activities (AP and Ca(2+)-ATPase) in microvessels remained essentially unchanged. The localization of anionic sites was also unchanged except on the luminal surface of the endothelium of a few blood microvessels located in areas of the brain where leakage of the injected HRP was noted. In these vessels the injected HRP was often attached to the luminal surface of the endothelial cells, suggesting its increased stickiness. These data, compared with our previous observations on brain microvascular endothelial cells growing in vitro, indicate that cytotoxicity of aluminum is evidently less pronounced in the living organism, presumably due to action of detoxicating and regulatory mechanisms.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3