Quantitative histochemistry of mucosubstance in tracheal epithelium of the macaque monkey.

Author:

Heidsiek J G,Hyde D M,Plopper C G,St George J A

Abstract

Experimentally applied irritants and chronic respiratory diseases appear to alter the amount and composition of secretory cell product in surface epithelium and submucosal glands of pulmonary airways. Previous methods used to quantify these changes have been very time-consuming or have not measured the same components of the airway wall. The present study describes a rapid, reproducible, and standardized automated method for quantifying secretory products. The tracheas from eight macaque monkeys were fixed with glutaraldehyde-paraformaldehyde, embedded in glycol methacrylate, serially sectioned at 2 microns, and histochemically stained to demonstrate neutral, sialylated, and sulfated mucosubstances in the cartilaginous, intercartilaginous, and membranous regions of both proximal and distal trachea. Volume densities were determined using an image analyzer and are expressed as volume of stained mucosubstance per unit surface area of epithelial basal lamina. Comparison of the automated method to manual point counting and evaluation of internal variance showed that the automated method had a twelve-fold increase in efficiency with no significant differences in measurements. After weighting the values of each region according to their anatomical contribution, the total secretory product (TSP) for the entire trachea was determined. Periodate-reactive acid material predominated (73%) in luminal surface epithelium, and neutral material predominated (78%) in submucosal glands. Surface epithelium contained 66% of the TSP. The greater contribution by surface epithelium and predominance of acid mucins there resulted in a TSP from the trachea that consisted of 59% acid material (most of which was sulfated) and 41% neutral material. The method proved to be a valid, reproducible, and rapid technique for evaluating variability in abundance of mucosubstances within airway epithelium.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3