Dense and Disconnected: Analyzing the Sedimented Style of ChatGPT-Generated Text at Scale

Author:

Markey Ben1ORCID,Brown David West1ORCID,Laudenbach Michael2ORCID,Kohler Alan1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. New Jersey Institute of Technology, Newark, NJ, USA

Abstract

ChatGPT and other LLMs are at the forefront of pedagogical considerations in classrooms across the academy. Many studies have spoken to the technology’s capacity to generate one-off texts in a variety of genres. This study complements those by inquiring into its capacity to generate compelling texts at scale. In this study, we quantitatively and qualitatively analyze a small corpus of generated texts in two genres and gauge it against novice and published academic writers along known dimensions of linguistic variation. Theoretically, we position and historicize ChatGPT as a writing technology and consider the ways in which generated text may not be congruent with established trajectories of writing development in higher education. Our study found that generated texts are more informationally dense than authored texts and often read as dialogically closed, “empty,” and “fluffy.” We close with a discussion of potentially explanatory linguistic features, as well as relevant pedagogical implications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3