Correction of Cupping Artifacts in Axial Cone-Beam Computed Tomography Images by Using Image Processing Algorithms

Author:

Razi Tahmineh1,Manaf Nader Vahdani2,Yadekar Morteza2,Razi Sedigheh1,Gheibi Shiva1

Affiliation:

1. Department of Oral & Maxillofacial Radiology, Faculty of Dentistry, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Electronic Engineering, Tabriz Branch, Seraj Higher Education Institute, Tabriz, Iran

Abstract

Objectives: One of the most important problems of cone-beam computed tomography (CBCT) imaging technique is the presence of dense objects, such as implants, amalgam fillings, and metal veneers, which result in beam-hardening artifacts. With an increase in the application of CBCT images and considering the problems in relation to cupping artifacts, some algorithms have been presented to reduce these artifacts. The aim was to present an algorithm to eliminate cupping artifacts from axial and other reconstructed CBCT images. Materials and Methods: We used CBCT images of NewTom VG imaging system (Verona, Italy, at Dentistry Faculty, Medical Sciences University, Tabriz, Iran) in which every image has a resolution of 366 × 320 in DICOM format. 50 images of patients with cupping artifacts were selected. Using Sobel edge detector and nonlinear gamma correction coefficient, the difference was calculated between the density of axial images in the main image and the image resulting from nonlinear gamma correction at the exact location of the radiopaque dental materials detected by Sobel. The points at which this density difference was out of a definite limit were treated as image artifacts and were eliminated from the main image by the inpainting method. Results: The resultant axial images, for producing reconstructed cross-sectional, panoramic images without cupping artifacts, were imported into NTT viewer V5.6 and utilized. Conclusions: With comparison, acquired images observed that the offering algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed images. This algorithm does not need any additional equipment.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3