Comparison of Bond Strength of Soft Denture Liner on the Denture Base Materials Produced by Different Methods and Effect of Thermocycling

Author:

Tugut Faik1ORCID,Koyu Tug˘çe2,Turkyilmaz Orhun1

Affiliation:

1. Faculty of Dentistry, Department of Prosthodontics, Sivas Cumhuriyet University, Sivas, Turkey

2. Faculty of Dentistry, Department of Prosthodontics, Kütahya Health Sciences University, Kütahya, Turkey

Abstract

Aim: This study set out to determine the tensile bond strength between denture bases (produced by 3D printing technology, conventional technique, and computer-aided design and computer-aided manufacturing [CAD/CAM] milled) and silicone-based soft lining material. The consequence of thermocycling on the bonding strength was also investigated. Materials and Methods: The bonding between denture foundation materials produced through three distinct techniques (conventional, CAD/CAM milled, and 3D printed) and silicone-based soft lining material was examined. Before tensile testing, half of the samples underwent thermocycling (5–55°C, 5,000 cycles) in 37°C distilled water for 48 hours. A universal testing apparatus employed a crosshead speed of 5 mm/min. The failure type was identified visually, and the maximum tensile strength was noted. The Shapiro-Wilk test and analysis of variances ( P = .05) were used to assess the statistics. Results: CAD/CAM milled denture base material (1.56 ± 0.62/1.36 ± 0.16 MPa) showed higher bond strength values than the other denture bases in the tensile test conducted before and after thermocycling ( P < .001). The denture base material made conventionally had the lowest bond strength (1.02 ± 0.24/0.77 ± 0.1 MPa) ( P < .001). The tensile bond strength values of the conventional and 3D printing groups showed a statistically significant drop before and after thermocycling ( P = .001). Regardless of thermocycling, adhesive failure was primarily seen in all groups (76.6%). Conclusion: Compared to conventionally produced denture bases, the bond strength of soft relining materials to CAD/CAM milled and 3D printed denture base is different. In denture base materials that are conventionally, CAD/CAM and 3D printed, the thermocycling method reduced bonding strength values.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3