Comparison of Different Dentin Deproteinizing Agents on Bond Strength and Microleakage of Universal Adhesive to Dentin

Author:

Bedir Fatih1ORCID,Telatar Gül Yıldız1ORCID

Affiliation:

1. Faculty of Dentistry, Department of Restorative Dentistry, Recep Tayyip Erdogan University, Rize, Turkey

Abstract

Aim: To evaluate the effects of papain (Brix 3000), bromelain, sodium hypochlorite (NaOCl), and chlorine dioxide (ClO2) application to the deep dentin surface on shear bond strength (SBS), microleakage, and dentin surface properties. Materials and Methods: Deep dentin surface ( n = 100) for evaluating SBS, class V preparation at the buccal surface for testing microleakage ( n = 100), and deep dentin slices ( n = 20) for evaluating surface properties were conducted on the 220 molar teeth. Four different deproteinizing agents (Brix 3000, 40% bromelain, 5.25% NaOCl (Chloraxid), and 0.12% ClO2) were applied to the dentin, and then the universal adhesive was used in self-etch (SE) and etch&rinse (E&R). Deproteinizing agents were not applied to the control group. All of the samples were subjected to 5000 cycles of thermal aging at 5ºC–55ºC. SBS (MPa) was tested by a universal testing machine. The microleakage of resin composite bonded with different adhesive modes was evaluated under a stereomicroscope. The changes in the surface morphology were examined with scanning electron microscopy (SEM) and attenuated total reflection – fourier transform infrared spectroscopy (ATR-FTIR). Results: ClO2 exhibited the highest bond strength among deproteinizing agents. Compared to the SE mode, E&R mode significantly showed higher bond strength ( p < .05). In gingival margin, bromelain SE exhibited the highest marginal leakage, while Brix 3000 SE had the lowest mean microleakage score. Conclusion: Deproteinizing with ClO2 was effective in improving the SBS of universal adhesive in the E&R mode to deep dentin. Deproteinization with bromelain before universal adhesive in SE mode showed more microleakage on both the occlusal and gingival surfaces.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3