A numerical study of two-phase miscible flow through porous media with a Lagrangian model

Author:

Ahammad M Jalal12,Alam Jahrul M3

Affiliation:

1. Department of Scientific Computing, Memorial University, St John’s, Canada

2. Department of Mathematics, University of Chittagong, Bangladesh

3. Department of Mathematics and Statistics, Memorial University, St John’s, Canada

Abstract

The multiphase flow mechanism in miscible displacement through porous media is an important topic in various applications, such as petroleum engineering, low Reynolds number suspension flows, dusty gas dynamics, and fluidized beds. To simulate such flows, volume averaging spatial operators are considered to incorporate pressure drag and skin friction experienced by a porous medium. In this work, a streamline-based Lagrangian methodology is extended for an efficient numerical approach to handle dispersion and diffusion of solvent saturation during a miscible flow. Overall pressure drag on the diffusion and dispersion of solvent saturation is investigated. Numerical results show excellent agreement with the results obtained from asymptotic analysis. The present numerical simulations indicate that the nonlinear effects due to skin friction and pressure drag cannot be accurately captured by Darcy’s method if the contribution of the skin friction dominates over that of the pressure drag. Moreover, mass conservation law is investigated, which is an important feature for enhanced oil recovery, and the results help to guide a good agreement with theory. This investigation examines how the flow regime may be optimized for enhanced oil recovery methods.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3