Comparison of an Automated Pattern Analysis Machine Vision Time-lapse System with Traditional Endpoint Measurements in the Analysis of Cell Growth and Cytotoxicity

Author:

Toimela Tarja1,Tähti Hanna1,Ylikomi Timo12

Affiliation:

1. Cell Research Centre, University of Tampere Medical School, Tampere, Finland;

2. Department of Clinical Chemistry, Tampere University Hospital, Tampere, Finland

Abstract

Machine vision is an application of computer vision. It both collects visual information and interprets the images. Although the machine obviously does not ‘see’ in the same sense that humans do, it is possible to acquire visual information and to create programmes to identify relevant image features in an effective and consistent manner. Machine vision is widely applied in industrial automation, but here we describe how we have used it to monitor and interpret data from cell cultures. The machine vision system used (Cell-IQ) consisted of an inbuilt atmosphere-controlled incubator, where cell culture plates were placed during the test. Artificial intelligence (AI) software, which uses machine vision technology, took care of the follow-up analysis of cellular morphological changes. Basic endpoint and staining methods to evaluate the condition of the cells, were conducted in parallel to the machine vision analysis. The results showed that the automated system for pattern analysis of morphological changes yielded comparable results to those obtained by conventional methods. The inbuilt software analysis offers a promising way of evaluating cell growth and various cell phases. The continuous follow-up and label-free analysis, as well as the possibility of measuring multiple parameters simultaneously from the same cell population, were major advantages of this system, as compared to conventional endpoint measurement methodology.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference21 articles.

1. Intelligent Vision Systems for Industry

2. ForsythD. & PonceJ. (2003). Computer Vision. A modern approach, 693pp. Upper Saddle River, NJ, USA: Prentice Hall.

3. SnyderW.E. & QiH. (2004). Machine Vision, 452pp. Cambridge, UK: Cambridge University Press.

4. Viability measurements in mammalian cell systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3