Optimisation of Conditions for the Formation of Spheroids of Head and Neck Squamous Cell Carcinoma Cell Lines for Use as Animal Alternatives

Author:

Tenschert Esther1,Kern Johann1,Affolter Annette1,Rotter Nicole1,Lammert Anne1

Affiliation:

1. Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany

Abstract

The use of in vitro 3-D cell culture models in cancer research has yielded substantial gains in knowledge on various aspects of tumour biology. Such cell culture models could be useful in the study of head and neck squamous cell carcinoma (HNSCC), where mimicking intratumoral and intertumoral heterogeneity is especially challenging. Our research aims to establish 3-D spheroid models for HNSCC that reproduce in vitro the connections between tumour cells and the surrounding microenvironment. The aims of this study were to determine the optimal conditions for the culture and use of spheroids from HNSCC cell lines and optimal timepoint for using the spheroids obtained, to evaluate the effects of coculture with tumour-specific fibroblasts on spheroid formation, and to investigate spheroid responses to cisplatin treatment. Four HNSCC cell lines (UMSCC-11A, UMSCC-11B, UMSCC-22B and UD-SCC-01) were seeded in flat or round bottom well ultra-low attachment spheroid plates, and spheroid formation was evaluated. The HNSCC cell lines were then cocultured with stromal cells of the tumour microenvironment, producing an accelerated formation of dense spheroids. The viability of cells within the spheroids was assessed during cell culture by using a fluorescent dye. Our results suggest that: three out of the four cell lines tested could form usable spheroids with acceptable viability; the addition of stromal cells did not improve the number of viable cells; and the use of round bottom well plates supported the formation of a single spheroid, whereas flat bottom well plates led to the formation of multiple spheroids of different sizes.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The potential of hydrogel‐free tumoroids in head and neck squamous cell carcinoma;Cancer Medicine;2024-08

2. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced;Journal of Personalized Medicine;2023-11-03

3. Editorial;Alternatives to Laboratory Animals;2022-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3