Repeated Exposure to Benzalkonium Chloride in the Ex Vivo Eye Irritation Test (EVEIT): Observation of Isolated Corneal Damage and Healing

Author:

Frentz Markus12,Goss Miriam3,Reim Martin2,Schrage Norbert F.132

Affiliation:

1. Aachen Centre of Technology Transfer in Ophthalmology, Aachen, Germany

2. Department of Ophthalmology, Aachen University, Aachen, Germany

3. Department of Ophthalmology Cologne Merheim, Cologne, Germany

Abstract

The prediction of side-effects is a key issue in the REACH initiative on chemicals, in the production of cosmetics and in the preclinical testing of drugs. A new ex vivo test for repeated substance application is presented, that is able to identify corrosive and irritant effects on the eye by using crucial endpoints, such as cellular and morphological damage, and healing characteristics. The test is intended to replace the Draize eye test and to improve the preclinical testing of drugs and chemicals that are likely to come into direct contact with the cornea. The Ex Vivo Eye Irritation Test (EVEIT) is a self-healing system, involving living corneas obtained from abattoir rabbit eyes. The corneas are cultured in a similar way to the method used during the transplantation of corneal grafts. The corneas are exposed to multiple small, mechanical abrasions, and then test substances are repeatedly dropped onto the centres of the corneas. The test substances applied in this study were citrate-buffered hyaluronate eye drops and an artificial tear replacement, with increasing concentrations of up to 0.1% benzalkonium chloride. A dose-dependent inhibition of recovery and impairment of the lactate production mechanism in the cornea was observed with benzalkonium chloride treatment.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference12 articles.

1. ECETOC (1998). ECETOC Technical Report No. 48, Eye Irritation: Reference Chemicals Data Bank, 2nd edn, 236pp. Brussels, Belgium: ECETOC.

2. Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3