Precision-cut Guinea-pig Liver Slices as a Tool for Studying the Toxicity of Volatile Anaesthetics

Author:

Ghantous Hanan N.1,Fernando Jeanne1,Morgan Scott E.1,Gandolfi A. Jay1,Brandel Klaus1

Affiliation:

1. Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA

Abstract

Cultured precision-cut liver slices retain normal liver architecture and physiological biochemical functions. Hartley male guinea-pig liver slices have proven to be a good model for studying the biotransformation and toxicity of halothane. This system was used to evaluate the biotransformation and toxicity of different volatile anaesthetics (halothane, enflurane, isoflurane and sevoflurane), and compare their effects to those of new anaesthetics (desflurane). Liver slices (250–300μm thick) were incubated in sealed roller vials, containing Krebs Henseleit buffer at 37°C under 95% O2:5% CO2atmosphere. Volatile anaesthetics were delivered by volatilisation after pre-incubation for 1 hour to produce a constant concentration in the medium. Production of the metabolites, trifluroacetic acid and fluoride ion, was measured. Intracellular potassium ion content, protein synthesis and secretion were determined as indicators of viability of the slices. The rank order of biotransformation of anaesthetics by the liver slices was halothane >sevoflurane>isoflurane and enflurane>desflurane. The rank order of hepatotoxicity of these anaesthetics was halothane>isoflurane and enflurane>sevoflurane and desflurane. Halothane is the anaesthetic which is metabolised furthest and has the most toxic effect, while desflurane is the least metabolised anaesthetic and has the least toxicity. This in vitro cultured precision-cut liver slice system appears to be suitable for studying the biotransformation of volatile anaesthetics and correlating its role in the resulting toxicity.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3