Skin Organ Culture as an Alternative to In Vivo Dermatotoxicity Testing

Author:

van de Sandt Johannes J.M.1,van Schoonhoven Jacqueline1,Maas Wilfred J.M.1,Rutten Alphons A.J.J.L.1

Affiliation:

1. Department of Biological Toxicology, TNO Toxicology and Nutrition Institute, P.O. Box 360, 3700 AJ Zeist, The Netherlands

Abstract

Various aspects of acute cutaneous toxicity were studied in a skin organ culture model. Chemicals were applied topically for four hours, after which cytotoxicity was assessed by measuring the conversion of the tetrazolium salt, MTT. The relationship between pKa and cytotoxicity was investigated for a homologous series of benzoic acids. In this series, salicylic acid had the lowest pKa and proved to be the most toxic compound. Furthermore, the pH of the carrier solution was shown to influence the toxicity of chloroacetic acid and acetic acid in a different way. Using skin discs of both human and rabbit origin, we found that human skin was more resistant to toxicity induced by the irritants benzalkonium chloride and formaldehyde. As an additional aspect of dermal toxicology, the percutaneous absorption of testosterone was studied. After topical application to rabbit skin discs, testosterone was absorbed in a dose-dependent manner and concurrent metabolism was demonstrated.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3