An In Vitro Perfusion System to Examine the Responses of Endothelial Cells to Simulated Flow and Inflammatory Stimulation

Author:

Cockcroft Natalia Y.1,Oke Oluwatobiloba1,Cunningham Fiona1,Bishop Emma1,Fearon Ian M.1,Zantl Roman2,Gaça Marianna D.1

Affiliation:

1. British American Tobacco, Southampton, UK;

2. British American Tobacco, GmbH, Martinsried, Germany

Abstract

Atherosclerosis is a disease process which develops at the arterial branches and curvatures of medium to large arteries. Local haemodynamic flow patterns in these vessels play an essential role in the formation of atherosclerotic lesions. To simulate pro-atherogenic blood flow patterns, we have developed a perfusion system with the ability to simulate in vivo patterns of blood flow in vitro. In this system, human umbilical vein endothelial cells were seeded in y-shaped microslides, in which they were exposed to a variety of flow patterns. Besides being able to reproduce the disturbed flow involved in the development of pro-atherogenic events within the arterial wall, the system also permitted the assessment of the pre-conditioning/priming effect of oscillatory flow on endothelial cells. The system was further capable of integrating multi-endpoint assays relevant to cardiovascular disease. We show that oscillatory flow primed endothelial cells, making them more sensitive to subsequent treatments. The treatment of oscillatory flow-primed cells with TNFα resulted in the detection of enhanced levels of pro-inflammatory and chemoattractant factors such as IL-8 and MCP-1. These measurements were facilitated by the small volumes of medium circulating within the perfusion system. Oscillatory flow also altered the characteristics of mono-cyte adhesion to the endothelial layer. In summary, this system allows the monitoring of multiple endpoints and biomarkers, and provides an alternative to the use of in vivo and ex vivo models of cardiovascular disease.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3