Development of a Vessel Organ Culture System: Characterisation of the Method and Implications for the Reduction of Animal Experiments

Author:

Zaniboni Andrea1,Zannoni Augusta1,Bernardini Chiara1,De Cecco Marco2,Bombardi Cristiano1,Seren Eraldo1,Forni Monica1,Bacci Maria L.1

Affiliation:

1. Department of Veterinary Medical Sciences — DIMEVET, University of Bologna, Bologna, Italy

2. Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA

Abstract

In the field of cardiovascular research, the pig is considered to be an excellent animal model of human diseases. It is well-known that primary cultures of endothelial cells (ECs) are a powerful tool for the study of vascular physiology and pathology, and, according to the principles of the Three Rs, their use results in a substantial reduction in the numbers of experimental animals required. However, a limitation of EC culture is that the cells are not in their physiological context. Here, we describe and characterise a method for the culture of porcine vessels that overcomes the limitation of EC cultures, with the advantage of reducing the number of animals used for research purposes. The organ cultures were set-up by using an aortic cylinder obtained from the arteries of control pigs sacrificed for other experimental purposes. In order to characterise the method, vascular endothelial growth factor (VEGF) secretion, matrix metalloproteinase (MMP) activation and the vessel's structural features were evaluated during organ culture. These analyses confirm that the culture of aortic cylinder lumen, in a medium specific for ECs, results in a stable system in terms of VEGF and MMP secretion. The ECs do not undergo cell division during the organ culture, which is also the case in vivo, if no stimulation occurs. Overall, we show that this novel system closely resembles the in vivo context. Importantly, porcine aortas can be collected from either veterinary surgeries or slaughterhouses, without having to sacrifice animals specifically for the purposes of this type of research.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3