Twenty-First Century Challenges for In Vitro Neurotoxicity

Author:

Smith Robert A.1

Affiliation:

1. Neuroscience and Molecular Pharmacology, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, UK

Abstract

During the last 40 years, studies incorporating in vitro methodologies have greatly advanced our understanding of human nerve cell biology. Attempts have been made to apply these to investigations of neurotoxicity. Due to the complexity of the nervous system, underpinned by an array of integrated interactions between a host of cell types, it is concluded that, at present, alternative neural models are most successful in determining the underlying mechanisms which can cause perturbation of normal functioning of the nervous system, both in adults and during the embryonic period. The use of tiered batteries of test models has been proposed in screening programmes for neurotoxicity, with the generation of much encouraging data in laboratories across the globe. This review aims to discuss the development of neural alternatives, considers the various model systems available, and highlights specific neuronal endpoints which can be tested, in addition to the cytotoxic evaluation of neuronal viability. Developments in molecular and stem cell biology, which are appropriate to neural tissue, and which offer the prospect of exciting advances for the next decade, are cited.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurotoxicity of Engineered Nanomaterials: Testing Considerations;Frontiers in Public Health;2022-07-13

2. Noninvasive Electrophysiology: Emerging Prospects in Aquatic Neurotoxicity Testing;Environmental Science & Technology;2022-02-23

3. Target sites: nervous system;Information Resources in Toxicology;2020

4. Pathophysiological, toxicological, and immunoregulatory roles of reactive oxygen and nitrogen species (RONS);Reactive Oxygen Species (ROS), Nanoparticles, and Endoplasmic Reticulum (ER) Stress-Induced Cell Death Mechanisms;2020

5. Measurement of Toxicants and Toxicity;Food Toxicology;2016-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3