The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products

Author:

Eberlin Samara1,Silva Michelle Sabrina da1,Facchini Gustavo1,Silva Gustavo Henrique da1,Pinheiro Ana Lúcia Tabarini Alves1,Eberlin Samir2,Pinheiro Adriano da Silva1

Affiliation:

1. Kosmoscience Group, Campinas, São Paulo, Brazil

2. Sante D’Or Institute, Sumaré, São Paulo, Brazil

Abstract

The development of alternative approaches for safety and efficacy testing that avoid the use of animals is a worldwide trend, which relies on the improvement of current models and tools so that they better reproduce human biology. Human skin from elective plastic surgery is a promising experimental model to test the effects of topically applied products. As the structure of native skin is maintained, including cell population (keratinocytes, melanocytes, Langerhans cells and fibroblasts) and dermal matrix (containing collagen, elastin, glycosaminoglycans, etc.), it most closely matches the effects of substances on in vivo human skin. In this review, we present a collection of results that our group has generated over the last years, involving the use of human skin and scalp explants, demonstrating the feasibility of this model. The development of a test system with ex vivo skin explants, of standard size and thickness, and cultured at the air–liquid interface, can provide an important tool for understanding the mechanisms involved in several cutaneous disorders.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3